Review on Surfactant Modified Zeolites as slow Release fertilizer
Main Article Content
Sabiya Khan
Sheikh Abdul Majid
Zeolites could be the potential solution of some major problems in agriculture including pollution due to excessive use of fertilizers and economic drain due to the same. Ion exchange of zeolites can be used to load agents as well as release them and the high ion exchange capacity improves the loadings of agents. Because of these properties, zeolites have been used for controlled release of fertilizer components. Zeolites added to fertilizers help to retain nutrients and therefore improving the long term soil quality by enhancing its absorption ability. The surfactant modified zeolites (SMZ) could be used as carriers in controlled release formulations of fertilizer with higher affinity for anions to decrease its contamination potential.
Vogt, E. T., Whiting, G. T., Chowdhury, A. D., &Weckhuysen, B. M. (2015). Zeolites and zeotypes for oil and gas conversion. In Advances in catalysis (Vol. 58, pp. 143- 314). Academic Press.
Gaidoumi, A. E., Benabdallah, A. C., Bali, B. E., &Kherbeche, A. (2018). Synthesis and characterization of zeolite HS using natural pyrophyllite as new clay source. Arabian Journal for Science and Engineering, 43(1), 191-197.
Moshoeshoe, M., Nadiye-Tabbiruka, M. S., &Obuseng, V. (2017). A review of the chemistry, structure, properties and applications of zeolites. Am. J. Mater. Sci, 7(5), 196-221.
Ekpe, Ikenna. (2017). Zeolite Synthesis, Characterisation and Application Areas: A Review. International Research Journal of Environmental Sciences. 6.
Yilmaz, B., Trukhan, N., &MüLLER, U. (2012). Industrial outlook on zeolites and metal organic frameworks. Chinese Journal of Catalysis, 33(1), 3-10.
Armbruster, T., & Gunter, M. E. (2001). Crystal structures of natural zeolites. Reviews in mineralogy and geochemistry, 45(1), 1-67.
Petrov, I., &Michalev, T. (2012). Synthesis of zeolite A: a review. Научнитрудовенарусенскияуниверситет, 51, 30-35.
Widiastuti, N., Wu, H., Ang, H. M., & Zhang, D. (2011). Removal of ammonium from greywater using natural zeolite. Desalination, 277(1-3), 15-23.
Valdés, M. G., Perez-Cordoves, A. I., & Diaz-Garcia, M. E. (2006). Zeolites and zeolite-based materials in analytical chemistry. TrAC Trends in Analytical Chemistry, 25(1), 24-30.
Bacakova, L., Vandrovcova, M., Kopova, I., &Jirka, I. (2018). Applications of zeolites in biotechnology and medicine–a review. Biomaterials science, 6(5), 974-989.
Derbe, T., Temesgen, S., &Bitew, M. (2021). A Short Review on Synthesis, Characterization, and Applications of Zeolites. Advances in Materials Science & Engineering.
Xu, R., Pang, W., Yu, J., Huo, Q., & Chen, J. (2009). Chemistry of zeolites and related porous materials: synthesis and structure. John Wiley & Sons.
Deng, L., Xu, Q., & Wu, H. (2016). Synthesis of zeolite-like material by hydrothermal and fusion methods using municipal solid waste fly ash. Procedia Environmental Sciences, 31, 662-667.
Wang, Cheng & Shi, Huisheng& Li, Yan. (2012). Synthesis and characterization of natural zeolite supported Cr-doped TiO2 photocatalysts. Applied Surface Science. 258. 4328–4333. 10.1016/j.apsusc.2011.12.108
Holmberg, Brett & Wang, Huanting&Norbeck, Joseph & Yan, Yushan. (2003). Controlling size and yield of zeolite Y nanocrystals using tetramethylammonium bromide. Microporous and Mesoporous Materials. 59. 13-28. 10.1016/S1387- 1811(03)00271-3
Thompson, R. W. (1998). Recent advances in the understanding of zeolite synthesis. Synthesis, 1-33.
Kianfar, E. (2019). Nanozeolites: synthesized, properties, applications. Journal of Sol- Gel Science and Technology, 91(2), 415-429.
Wang, Z., Mitra, A., Wang, H., Huang, L., & Yan, Y. (2001). Pure Silica Zeolite Films as Low‐k Dielectrics by Spin‐On of Nanoparticle Suspensions. Advanced Materials, 13, 1463-1466.
Tang, Ting & Zhang, Lei & Dong, Hai& Fang, Zhongxue& Fu, Wenqian& Yu, Quanyong& Tang, Tiandi. (2017). Organic template-free synthesis of zeolite Y nanoparticle assemblies and their application in the catalysis of the Ritter reaction. RSC Adv.. 7. 7711-7717. 10.1039/C6RA27129D.
Huang, Y., Wang, K., Dong, D., Li, D., Hill, M. R., Hill, A. J., & Wang, H. (2010). Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes. Microporous and Mesoporous Materials, 127(3), 167-175.
Yang, N., Yue, M., & Wang, Y. (2012). Synthesis of zeolites by dry gel conversion. Progress in Chemistry, 24(0203), 253.
Zhou, D., Lu, X., Xu, J., Yu, A., Li, J., Deng, F., & Xia, Q. (2012). Dry gel conversion method for the synthesis of organic–inorganic hybrid MOR zeolites with modifiable catalytic activities. Chemistry of Materials, 24(21), 4160-4165.
Weitkamp, J., & Hunger, M. (2005). Preparation of zeolites via the dry-gel synthesis method. In Studies in Surface Science and Catalysis (Vol. 155, pp. 1-12). Elsevier.
Jain, R., &Rimer, J. D. (2020). Seed-Assisted zeolite synthesis: The impact of seeding conditions and interzeolite transformations on crystal structure and morphology. Microporous and Mesoporous Materials, 300, 110174.
Sousa, L. V., Silva, A. O., Silva, B. J., Teixeira, C. M., Arcanjo, A. P., Frety, R., & Pacheco, J. G. (2017). Fast synthesis of ZSM-22 zeolite by the seed-assisted method of crystallization with methanol. Microporous and Mesoporous Materials, 254, 192-200.
Imai, H., Hayashida, N., Yokoi, T., &Tatsumi, T. (2014). Direct crystallization of CHA-type zeolite from amorphous aluminosilicate gel by seed-assisted method in the absence of organic-structure-directing agents. Microporous and mesoporous materials, 196, 341-348.
Zeng, X., Hu, X., Song, H., Xia, G., Shen, Z. Y., Yu, R., &Moskovits, M. (2021). Microwave synthesis of zeolites and their related applications. Microporous and Mesoporous Materials, 323, 111262.
Li, Y., & Yang, W. (2008). Microwave synthesis of zeolite membranes: A review. Journal of Membrane Science, 316(1-2), 3-17.
Makgabutlane, B., Nthunya, L. N., Nxumalo, E. N., Musyoka, N. M., & Mhlanga, S.
D. (2020). Microwave irradiation-assisted synthesis of zeolites from coal fly ash: An optimization study for a sustainable and efficient production process. ACS omega, 5(39), 25000-25008.
Srilai, S., Tanwongwan, W., Onpecth, K., Wongkitikun, T., Panpiemrasda, K., Panomsuwan, G., &Eiad-ua, A. (2020, October). Synthesis of zeolite A from bentonite via hydrothermal method: The case of different base solution. In AIP Conference Proceedings (Vol. 2279, No. 1, p. 060006). AIP Publishing LLC.
Nyankson, E., Efavi, J. K., Yaya, A., Manu, G., Asare, K., Daafuor, J., &Abrokwah, R.
Y. (2018). Synthesis and characterisation of zeolite-A and Zn-exchanged zeolite-A based on natural aluminosilicates and their potential applications. Cogent Engineering, 5(1), 1440480.
Khan, G. M., Arafat, S. M. Y., Reza, M. N., Razzaque, S. M., &Alam, M. (2010). Linde Type-A zeolite synthesis and effect of crystallization on its surface acidity.
Parnham, E. R., & Morris, R. E. (2007). Ionothermal synthesis of zeolites, metal– organic frameworks, and inorganic–organic hybrids. Accounts of chemical research, 40(10), 1005-1013.
Wang, Y., Xu, Y., Li, D., Liu, H., Li, X., Tao, S., &Tian, Z. (2015). Ionothermal synthesis of zeoliticimidazolate frameworks and the synthesis dissolution- crystallization mechanism. Chinese Journal of Catalysis, 36(6), 855-865.
Naber, J. E., De Jong, K. P., Stork, W. H. J., Kuipers, H. P. C. E., & Post, M. F. M. (1994). Industrial applications of zeolite catalysis. In Studies in surface science and catalysis (Vol. 84, pp. 2197-2219). Elsevier.
Primo, A., & Garcia, H. (2014). Zeolites as catalysts in oil refining. Chemical Society Reviews, 43(22), 7548-7561.
Yilmaz, B., & Müller, U. (2009). Catalytic applications of zeolites in chemical industry. Topics in Catalysis, 52(6), 888-895.
Martin, A. (2016). Zeolite catalysis. Catalysts, 6(8), 118.
Zou, H., Sun, Q., Fan, D., Fu, W., Liu, L., & Wang, R. (2015). Facile synthesis of yolk/core-shell structured TS-1@ mesosilica composites for enhanced hydroxylation of phenol. Catalysts, 5(4), 2134-2146.
Gliozzi, G., Passeri, S., Bortolani, F., Ardizzi, M., Mangifesta, P., &Cavani, F. (2015). Zeolite catalysts for phenol benzoylation with benzoic acid: Exploring the synthesis of hydroxybenzophenones. Catalysts, 5(4), 2223-2243.
Wang, Y., Yokoi, T., Namba, S., &Tatsumi, T. (2016). Effects of dealumination and desilication of beta zeolite on catalytic performance in n-hexane cracking. Catalysts, 6(1), 8.
Han, J., Jiang, G., Han, S., Liu, J., Zhang, Y., Liu, Y., ...& Wei, Y. (2016). The fabrication of Ga2O3/ZSM-5 hollow fibers for efficient catalytic conversion of n- butane into light olefins and aromatics. Catalysts, 6(1), 13.
Liu, G., Zhao, Y., &Guo, J. (2016). High selectively catalytic conversion of lignin- based phenols into para-/m-xylene over Pt/HZSM-5. Catalysts, 6(2), 19.
Fattahi, N., Triantafyllidis, K., Luque, R., &Ramazani, A. (2019). Zeolite-based catalysts: a valuable approach toward ester bond formation. Catalysts, 9(9), 758.
Liu, L., &Corma, A. (2020). Evolution of isolated atoms and clusters in catalysis. Trends in Chemistry, 2(4), 383-400.
Pandiangan, K. D., Simanjuntak, W., Pratiwi, E., &Rilyanti, M. (2019, October). Characteristics and catalytic activity of zeolite-a synthesized from rice husk silica and aluminium metal by sol-gel method. In Journal of Physics: Conference Series (Vol. 1338, No. 1, p. 012015). IOP Publishing.
Reiprich, B., Tarach, K. A., Pyra, K., Grzybek, G., &Góra-Marek, K. (2022). High- Silica Layer-like Zeolites Y from Seeding-Free Synthesis and Their Catalytic Performance in Low-Density Polyethylene Cracking. ACS applied materials & interfaces, 14(5), 6667-6679.
Dragomirova, R., &Wohlrab, S. (2015). Zeolite membranes in catalysis—From separate units to particle coatings. Catalysts, 5(4), 2161-2222.
Li, Y., Li, L., & Yu, J. (2017). Applications of zeolites in sustainable chemistry. Chem, 3(6), 928-949.
Pan, T., Wu, Z., & Yip, A. C. (2019). Advances in the green synthesis of microporous and hierarchical zeolites: a short review. Catalysts, 9(3), 274.
Margeta, K., Logar, N. Z., Šiljeg, M., &Farkaš, A. (2013). Natural zeolites in water treatment–how effective is their use. Water treatment, 5, 81-112.
Koshy, N., & Singh, D. N. (2016). Fly ash zeolites for water treatment applications. Journal of Environmental Chemical Engineering, 4(2), 1460-1472.
Rahman, M. M., Hasnida, N., &Nik, W. W. (2009). Preparation of zeolite Y using local raw material rice husk as a silica source. Journal of Scientific Research, 1(2), 285-291.
Gadhban, M. Y., Abdulmajed, Y. R., Ali, F. D., & Al-Sharify, Z. T. (2020, June). Preparation of Nano Zeolite and itsApplication in Water Treatment. In IOP Conference Series: Materials Science and Engineering (Vol. 870, No. 1, p. 012054). IOP Publishing.
Jiang, N., Shang, R., Heijman, S. G., &Rietveld, L. C. (2018). High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water research, 144, 145-161.
Nazarenko, O., &Zarubina, R. (2013). Application of sakhaptinsk zeolite for improving the quality of ground water. Energy and Environmental Engineering, 1(2), 68-73.
Itskos, G., Koutsianos, A., Koukouzas, N., &Vasilatos, C. (2015). Zeolite development from fly ash and utilization in lignite mine-water treatment. International journal of mineral processing, 139, 43-50.
Azamat, J., &Khataee, A. (2017). Improving the performance of heavy metal separation from water using MoS2 membrane: molecular dynamics simulation. Computational Materials Science, 137, 201-207.
Motsa, M. M., Msagati, T. A. M., Thwala, J. M., & Mamba, B. B. (2015). Polypropylene–zeolite polymer composites for water purification: synthesis, characterisation and application. Desalination and Water Treatment, 53(10), 2604- 2612.
Chen, X., Yu, L., Zou, S., Xiao, L., & Fan, J. (2020). Zeolite cotton in tube: A simple robust household water treatment filter for heavy metal removal. Scientific Reports, 10(1), 1-9.
Haralambous, A., Maliou, E., &Malamis, M. (1992). The use of zeolite for ammonium uptake. Water Science and Technology, 25(1), 139-145.
Kadhom, M., & Deng, B. (2018). Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Applied Materials Today, 11, 219- 230.
Paragas, D. S., Salazar, J. R., &Ginez, M. O. (2014). Preparation, Characterization and Application of Rice hull-derived zeolites in water treatment. Journal of Asian Scientific Research, 4(7), 348-355.
Ippolito, J. A., Tarkalson, D. D., &Lehrsch, G. A. (2011). Zeolite soil application method affects inorganic nitrogen, moisture, and corn growth. Soil science, 176(3), 136-142.
Mumpton, F. A. (1999). La rocamagica: Uses of natural zeolites in agriculture and industry. Proceedings of the National Academy of Sciences, 96(7), 3463-3470.
Nakhli, S. A. A., Delkash, M., Bakhshayesh, B. E., &Kazemian, H. (2017). Application of zeolites for sustainable agriculture: a review on water and nutrient retention. Water, Air, & Soil Pollution, 228(12), 1-34.
De Smedt, C., Someus, E., &Spanoghe, P. (2015). Potential and actual uses of zeolites in crop protection. Pest management science, 71(10), 1355-1367.
Ahmed, O. H., Sumalatha, G., &Muhamad, A. N. (2010). Use of zeolite in maize (Zea mays) cultivation on nitrogen, potassium and phosphorus uptake and use efficiency. International Journal of the Physical Sciences, 5(15), 2393-2401.
Gül, A., Eroğul, D., &Ongun, A. R. (2005). Comparison of the use of zeolite and perlite as substrate for crisp-head lettuce. ScientiaHorticulturae, 106(4), 464-471.
de Campos Bernardi, A. C., Oliviera, P. P. A., de Melo Monte, M. B., & Souza-Barros,
F. (2013). Brazilian sedimentary zeolite use in agriculture. Microporous and Mesoporous Materials, 167, 16-21.
Torma, S., Vilcek, J., Adamisin, P., Huttmanova, E., &Hronec, O. (2014). Influence of natural zeolite on nitrogen dynamics in soil. Turkish Journal of Agriculture and Forestry, 38(5), 739-744.
Boros-Lajszner, E., Wyszkowska, J., &Kucharski, J. (2018). Use of zeolite to neutralise nickel in a soil environment. Environmental monitoring and assessment, 190(1), 1-13.
Noori, M., Zendehdel, M., &Ahmadi, A. (2006). Using natural zeolite for the improvement of soil salinity and crop yield. Toxicological & Environmental Chemistry, 88(1), 77-84.
Baninasab, B. (2009). Effects of the application of natural zeolite on the growth and nutrient status of radish (Raphanussativus L.). The Journal of Horticultural Science and Biotechnology, 84(1), 13-16.
Joughehdoust, S., &Manafi, S. (2008). Application of zeolite in biomedical engineering: a review. In Proceedings of the Iran International Zeolite Conference (IIZC’08), Tehran.
Vargas, A. M., Cipagauta-Ardila, C. C., Molina-Velasco, D. R., & Ríos-Reyes, C. A. (2020). Surfactant-modified natural zeolites as carriers for diclofenac sodium release: A preliminary feasibility study for pharmaceutical applications. Materials Chemistry and Physics, 256, 123644.
Attia, T. M. S., & Hu, X. L. (2013). Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies. Chemosphere, 93(9), 2076-2085.
Bhardwaj, D., Sharma, M., Sharma, P., &Tomar, R. (2012). Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and
preparation of slow release nitrogen fertilizer. Journal of hazardous materials, 227, 292-300.
Zwingmann, N., Singh, B., Mackinnon, I. D., &Gilkes, R. J. (2009). Zeolite from alkali modified kaolin increases NH4+ retention by sandy soil: Column experiments. Applied Clay Science, 46(1), 7-12.
Stamatakis, M. G., Stamataki, I. S., Giannatou, S., Vasilatos, C., Drakou, F., Mitsis, I., &Xinou, K. (2017). Characterization and evaluation of chabazite-and mordenite-rich tuffs, and their mixtures as soil amendments and slow release fertilizers. Archives of Agronomy and Soil Science, 63(6), 735-747.
Perrin, T. S., Drost, D. T., Boettinger, J. L., & Norton, J. M. (1998). Ammonium‐loaded clinoptilolite: a slow‐release nitrogen fertilizer for sweet corn. Journal of plant nutrition, 21(3), 515-530.
Rahmat, H., Ganjar, F., Uswatul, C., Sayekti, W., & Ari, H. R. (2015). Effectiveness of urea nanofertilizer based aminopropyltrimethoxysilane (APTMS)-zeolite as slow release fertilizer system. African Journal of Agricultural Research, 10(14), 1785-1788.
Rajonee, A. A., Nigar, F., Ahmed, S., &Huq, S. I. (2016). Synthesis of nitrogen nano fertilizer and its efficacy. Canadian Journal of Pure and Applied Sciences, 10, 3913- 3919.
Li, Z., Zhang, Y., & Li, Y. (2013). Zeolite as slow release fertilizer on spinach yields and quality in a greenhouse test. Journal of Plant Nutrition, 36(10), 1496-1505.
Malekian, R., Abedi-Koupai, J., &Eslamian, S. S. (2011). Use of zeolite and surfactant modified zeolite as ion exchangers to control nitrate leaching. International Journal of Geological and Environmental Engineering, 5(4), 267-271.
Bansiwal, A. K., Rayalu, S. S., Labhasetwar, N. K., Juwarkar, A. A., &Devotta, S. (2006). Surfactant-modified zeolite as a slow release fertilizer for phosphorus. Journal of Agricultural and Food Chemistry, 54(13), 4773-4779.
Zhou, H., Bhattarai, R., Li, Y., Li, S., & Fan, Y. (2019). Utilization of coal fly and bottom ash pellet for phosphorus adsorption: Sustainable management and evaluation. Resources, Conservation and Recycling, 149, 372-380.
Li, Z. (2003). Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release. Microporous and mesoporous materials, 61(1-3), 181-188.
Abdul Majid, S., Ahmad Mir, M., & Mir, J. M. (2018). Nitrate and phosphate sorption efficiency of mordenite versus zeolite-A at the convergence of experimental and density
functionalized evaluation. Journal of the Chinese Advanced Materials Society, 6(4), 691-705.
Lin, K., Liu, P., Wei, L., Zou, Z., Zhang, W., Qian, Y., ...& Chang, J. (2013). Strontium substituted hydroxyapatite porous microspheres: surfactant-free hydrothermal synthesis, enhanced biological response and sustained drug release. Chemical engineering journal, 222, 49-59.
Bhardwaj, D., Sharma, M., &Tomar,R.(2014). Removal and slow release studies of phosphate on surfactant loaded hydrothermally synthesized silicate nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2649-2658.
Manikandan, A., & Subramanian, K. S. (2014). Fabrication and characterisation of nanoporous zeolite based N fertilizer. Afr J Agric Res, 9(2), 276-284.
MohdRusli, R. (2014). Leachate Pollutants Adsorption Using Potassium Hydroxide and Surfactant Modified Bentonite for Possible Use as Slow Release Fertiliser. Iranian (Iranica) Journal of Energy & Environment, 5(3).
Flores, C. G., Schneider, H., Marcilio, N. R., Ferret, L., & Oliveira, J. C. P. (2017). Potassic zeolites from Brazilian coal ash for use as a fertilizer in agriculture. Waste Management, 70, 263-271.
Yuvaraj, M., & Subramanian, K. S. (2018). Development of slow release Zn fertilizer using nano-zeolite as carrier. Journal of plant nutrition, 41(3), 311-320.
Jie, L. Y., &Malek, N. A. N. N. (2018). Application of Surfactant-Modified Clinoptilolite in Peat Substrate on the Growth of Orthosiphonstamineus. Communications in Soil Science and Plant Analysis, 49(19), 2465-2477.
Lateef, A., Nazir, R., Jamil, N., Alam, S., Shah, R., Khan, M. N., &Saleem, M. (2016). Synthesis and characterization of zeolite based nano–composite: An environment friendly slow release fertilizer. Microporous and Mesoporous Materials, 232, 174-183.
Lateef, A., Nazir, R., Jamil, N., Alam, S., Shah, R., Khan, M. N., &Saleem, M. (2019). Synthesis and characterization of environmental friendly corncob biochar based nano- composite–A potential slow release nano-fertilizer for sustainable agriculture. Environmental Nanotechnology, Monitoring & Management, 11, 100212.
Dubey, A., &Mailapalli, D. R. (2019). Zeolite coated urea fertilizer using different binders: Fabrication, material properties and nitrogen release studies. Environmental Technology & Innovation, 16, 100452.
Macolino, S., &Zanin, G. (2014, August). Effectiveness of a zeolite-based fertilizer in reducing nutrient leaching in a recently sodded turfgrass. In XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): III 1122 (pp. 73-82).
Tzanakakis, V. A., Monokrousos, N., &Chatzistathis, T. (2021). Effects of clinoptilolite zeolite and vermiculite on nitrification and nitrogen and phosphorus acquiring enzymes in a nitrogen applied agricultural soil. Journal of Soil Science and Plant Nutrition, 21(4), 2791-2802.
Wu, Q., Chen, T., Chi, D., Xia, G., Sun, Y., & Song, Y. (2019). Increasing nitrogen use efficiency with lower nitrogen application frequencies using zeolite in rice paddy fields. International Agrophysics, 33(2).
Dong, D., Wang, C., Van Zwieten, L., Wang, H., Jiang, P., Zhou, M., & Wu,
W. (2020). An effective biochar-based slow-release fertilizer for reducing nitrogen loss in paddy fields. Journal of Soils and Sediments, 20(8), 3027-3040.
Salam, M. A., Mokhtar, M., Albukhari, S. M., Baamer, D. F., Palmisano, L., AlHammadi, A. A., &Abukhadra, M. R. (2021). Synthesis of zeolite/geopolymer composite for enhanced sequestration of phosphate (PO43−) and ammonium (NH4+) ions; equilibrium properties and realistic study. Journal of Environmental Management, 300, 113723.
Palanivell, P., Ahmed, O. H., Omar, L., & Abdul Majid, N. M. (2021). Nitrogen, phosphorus, and potassium adsorption and desorption improvement and soil buffering capacity using clinoptilolite zeolite. Agronomy, 11(2), 379.
Hagab, R. H., Kotp, Y. H., &Eissa, D. (2018). Using nanotechnology for enhancing phosphorus fertilizer use efficiency of peanut bean grown in sandy soils. Journal of Advanced Pharmacy Education & Research| Jul-Sep, 8(3), 59-67.
PANDIT, V., JEEVAN, R., & NAIK, R. (2021). Effect of different levels of nitrogen and zeolite on nutrient uptake and nitrogen use efficiency in rice. Journal of Crop and Weed, 17(2), 01-08.
Omar, L., Ahmed, O. H., &Majid, N. M. A. (2018). Amending chemical fertilizers with rice straw compost and clinoptilolite zeolite and their effects on nitrogen use efficiency and fresh cob yield of Zea mays L. Communications in Soil Science and Plant Analysis, 49(14), 1795-1813.
Zheng, J., Chen, T., Chi, D., Xia, G., Wu, Q., Liu, G., ...&Siddique, K. H. (2019). Influence of zeolite and phosphorus applications on water use, P uptake and yield in rice under different irrigation managements. Agronomy, 9(9), 537.
Uygur, V., Celik, C. S., Sukusu, E., &Mujdeci, M. (2017). The effect of particle size on phosphorus adsorption kinetic and desorption by turkish natural zeolites. Fresenius Environmental Bulletin, 26(10), 6253-6260.
Hassan, A. Z. A., Mahmoud, A. W. M., &Turky, G. (2017). Rice husk derived nano zeolite (AM 2) as fertilizer, hydrophilic and novel organophillic material. American Journal of Nanomaterials, 5(1), 11-23.
Ahmad, A., Ijaz, S. S., & He, Z. (2021). Effects of zeolitic urea on nitrogen leaching (NH4-N and NO3-N) and volatilization (NH3) in spodosols and alfisols. Water, 13(14), 1921.
Hassan, A. Z. A., & Mahmoud, A. W. M. (2013). The combined effect of bentonite and natural zeolite on sandy soil properties and productivity of some crops. Topclass Journal of Agricultural Research, 1(3), 22-28.
Kocar, G. (2012). The use of anaerobically digested slurry combined with natural zeolite for rapeseed production. Energy Education Science and Technology Part A: Energy Science and Research, 30(1), 545-552.
Campisi, T., Abbondanzi, F., Faccini, B., Di Giuseppe, D., Malferrari, D., Coltorti, M., ...&Passaglia, E. (2016). Ammonium-charged zeolitite effects on crop growth and nutrient leaching: greenhouse experiments on maize (Zea mays). Catena, 140, 66-76.
Lei, Z., Cagnetta, G., Li, X., Qu, J., Li, Z., Zhang, Q., & Huang, J. (2018). Enhanced adsorption of potassium nitrate with potassium cation on H3PO4 modified kaolinite and nitrate anion into Mg-Al layered double hydroxide. Applied clay science, 154, 10-16.
Costamagna, G., Chiabrando, V., Fassone, E., Mania, I., Gorra, R., Ginepro, M., &Giacalone, G. (2020). Characterization and use of absorbent materials as slow-release fertilizers for growing strawberry: Preliminary results. Sustainability, 12(17), 6854.
Yuvaraj, M., & Subramanian, K. S. (2018). Development of slow release Zn fertilizer using nano-zeolite as carrier. Journal of plant nutrition, 41(3), 311-320.
Hoeung, P., Bindar, Y., &Senda, S. P. (2018). Development of granular urea- zeolite slow release fertilizer using inclined pan granulator. JurnalTeknik Kimia Indonesia, 10(2), 95-101.
de Campos Bernardi, A. C., Oliviera, P. P. A., de Melo Monte, M. B., & Souza- Barros, F. (2013). Brazilian sedimentary zeolite use in agriculture. Microporous and Mesoporous Materials, 167, 16-21.
Manikandan, A., & Subramanian, K. S. (2016). Evaluation of zeolite based nitrogen nano-fertilizers on maize growth, yield and quality on inceptisols and alfisols. Int J Plant Soil Sci, 9(4), 1-9.
Yuan, J., Yang, J., Ma, H., & Chang, Q. (2017). Preparation of Zeolite F as Slow Release Fertilizers from K‐Feldspar Powder. ChemistrySelect, 2(33), 10722-10726.
Maharani, D. K., Dwiningsih, K., Savana, R. T., &Andika, P. M. V. (2018, December). Usage Of Zeolite And Chitosan Composites As Slow Release Fertilizer. In International Conference on Science and Technology (ICST 2018) (pp. 179-182). Atlantis Press.
Chawakitchareon, P., Anuwattana, R., &Buates, J. (2016). Production of slow release fertilizer from waste materials. In Advanced Materials (pp. 129-137). Springer, Cham.
Hoeung, P., Bindar, Y., &Senda, S. P. (2018). Development of granular urea- zeolite slow release fertilizer using inclined pan granulator. JurnalTeknik Kimia In
Zhou, H., Bhattarai, R., Li, Y., Li, S., & Fan, Y. (2019). Utilization of coal fly and bottom ash pellet for phosphorus adsorption: Sustainable management and evaluation. Resources, Conservation and Recycling, 149, 372-380.donesia, 10(2), 95-101.
Bhardwaj, D., Sharma, P., Sharma, M., &Tomar, R. (2014). Removal and slow release studies of phosphate on surfactant loaded hydrothermally synthesized silicate nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2649- 2658.